Instance-Based Ontology Matching For Open and Distance Learning Materials
نویسندگان
چکیده
The present work describes an original associative model of pattern classification and its application to align different ontologies containing Learning Objects (LOs), which are in turn related to Open and Distance Learning (ODL) educative content. The problem of aligning ontologies is known as Ontology Matching Problem (OMP), whose solution is modeled in this paper as a binary pattern classification problem. The latter problem is then solved through the application of our new proposed associative model. The solution proposed here allows the alignment of two different ontologies —both in the Learning Objects Metadata (LOM) format— into a single ontology of LOs for ODL in LOM format, without redundant objects and with all inherent advantages for handling ODL LOs. The proposed model of pattern classification was validated through experiments, which were done on data taken from the Ontology Alignment Evaluation Initiative (OAEI) 2014 campaign, as well as on data taken from two known educative content repositories: ADRIADNE and MERLOT. The obtained results show a high performance when compared against some of the classifier algorithms present in the state of the art.
منابع مشابه
Towards Rule Learning Approaches to Instance-based Ontology Matching
Ontology matching approaches have mostly worked on the schema level so far. With the advent of Linked Open Data and the availability of a massive amount of instance information, instance-based approaches become possible. This position paper discusses approaches and challenges for using those instances as input for machine learning algorithms, with a focus on rule learning algorithms, as a means...
متن کاملIRDDS: Instance reduction based on Distance-based decision surface
In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classif...
متن کاملCentralized Clustering Method To Increase Accuracy In Ontology Matching Systems
Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...
متن کاملAn Instance-based Learning Approach for Ontology Matching
This paper proposes an instance-based learning approach for the ontology matching problem. This approach is applicable to scenarios where instances of the ontologies to be matched are exchanged between sources. An initial population of instances is used as a training set of a non-supervised algorithm that constructs mappings between properties of classes from the ontologies. To demonstrate the ...
متن کاملSemantic Ontology Method of Learning Resource based on the Approximate Subgraph Isomorphism
Digital learning resource ontology is often based on different specification building. It is hard to find resources by linguistic ontology matching method. The existing structural matching method fails to solve the problem of calculation of structural similarity well. For the heterogeneity problem among learning resource ontology, an algorithm is presented based on subgraph approximate isomorph...
متن کامل